Army Research Laboratory

Reflexive IW Model II

By
Vladimir Lefebvre

University of California, Irvine
prepared for
U.S. Army Research Laboratory
Survivability/Lethality Analysis Directorate

ARL-SR-114 " February 2002

Approved for public release; distribution unlimited.

0020304 g,




NOTICES

Disclaimers

The findings in this report are not to be construed as an official

Department of the Army position, unless so designated by other
authorized documents.

Citation of manufacturers’ or trade names does not constitute an official
endorsement or approval of the use thereof.

DESTRUCTION NOTICE—When this document is no longer needed,

destroy it by any method that will prevent disclosure of its contents or
reconstruction of the document.




Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
February 2002 Final '
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Reflexive IW Model Il

5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Lefevre, Viadimir A.
University of California, Irvine

5e. TASK NUMBER
Thomas W. Reader, ARL POC

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory REPORT NUMBER
Information and Electronic Protection Division . ARL-SR-114

Survivability Lethality Analysis Directorate (ATTN: AMSRL-SL-EA)
White Sands Missile Range, NM 88002-5513

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Army Research Laboratory ARL
2800 Powder Mill Road 11, SPONSOR/MONITOR'S REPORT
Adelphi, MD 20783-1145 NUMBER(S)

ARL-SR-114

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The results of advancing the use of reflexive processes in a multiple agent environment are presented. Emphasis is placed on a mathematical
representation.

15. SUBJECT TERMS
reflexive process, agent models

17. LIMITATION OF | 18. NUMBER | 19a, NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: ABSTRACT OF

SAR PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 53 19b. TELEPHONE NUMBER (Include area code)
U §) U

Standard Form 298 (Rev. 8/98)
Prescribed by ANS! Std. Z39.18




Contents

1. Introduction

2. Reflexive Models

3. Metachoice

4, Basic Examples of Metachoice
5. The Appearance of a Dilemma

6. Reflexive Control over Metachoice
1. Determining the Agent’s Will .......c.ccoviiiniiiinicncns
2. Determining the Model of the Situation.......c.coveniiniciscnenes
3. Determining the Agent’s Value System.......ccooiiinninncnns

7. A Boolean-Linear Model of the Agent
8. Examples of Using Boolean-Linear Model of the Agent
9. Reflexive Control over Bipolar Choice

10. Imitation of Another Agent

11. Using a Method of Reflexive Games to Find Values of x1, x2,
y1, Y2

12. Realization of a Choice
13. The Golden Section
14. Conclusion

References

12

15
15
17
18

19

28

30

32

34

37

39

40

41




1. INTRODUCTION

The objective of this research is to expand a Reflexive IW Model <x,.x,x;> to a
model <x,x,,M>, where M is the agent’s model of a situation. (A description of the
<x,.x,,%;>-model is given in the following works: Lefebvre (1982, 1992, 1999a,b), Krylov
(1994), Schreider (1994), Adams-Weber (1997), Miller & Sulkoski (1999a,b), Taran
(1999)). The <x,,x,,M>-model allows the agent to operate with higher values, which do not
have intensity and can be characterized only by binary evaluations “positive” or “negative.”
We show in detail how to construct a functional representation of M using objective
information. The values of x, and x, reflect “lower” values, utility-measures of the
alternatives which have intensities and can be associated with real numbers. One of the
central problems in reflexive modeling is to elaborate methods for finding the values of x,
and x,. We show in this work that we can expand an <x,.x,,M> model in such a way that
finding the values of x, and x, can be reduced to solving standard problems from the
classical game theory.

In the process of this research, it was unexpectedly discovered that, for modeling
strategical decisions when all the variables in the model take on only values of 1 and 0,
there is, in principle, no need to have preliminary information about the values of x; and
x,. This is due to the fact that finding strategical decision can be reduced to solving
functional equations, not numerical ones. ' '

In this work we analyzed in detail the possibility of using the model <x,,x,,A> in
conducting reflexive control, i.e., during informational influence on an enemy with the
purpose of inclining him to make a decision favorable for the party conducting such
control. :

All illustrative examples are chosen in such a way that the positive pole is bound
up with an active stance on the part of the agent, and the negative pole with a passive
stance. Consistently with the notation introduced in our previous report (Lefebvre, 1999b),
the actual pressure toward the positive pole is designated as p, and the expected pressures
as p,. Thus, p;=x; and p,=x,. It is necessary to emphasize that the <x,,x,,A>-model is
intentional. This means that the agent’s subjective will is considered as an objective factor,
represented in the model by a special variable. This is an essential difference between the
reflexive models and all other methods of modeling the decision-making process. The
sophistication of modern reflexive modeling allows us already today to use this method in
the real analysis of possible enemy actions as well as in preparing an informational attack.
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2. REFLEXIVE MODELS

In this report, we introduce an <x,x,,M>-model of an agent whose objective is to
choose between two alternatives. One of these alternatives embodies good for the agent,
and the other embodies bad. We will call these alternatives the positive and negative poles.
Our implicit supposition that the agent is capable of desiring or planing to act. We call this
ability will or infention. It is not always the case, however, that an intention turns into a real
action; an example is when a person who has decided to rob a bank does not do so because
he cannot bring himself to aim his pistol at the teller. Thus, we introduce an additional
characteristic: the agent's readiness to accomplish an action. Intention is a phenomenon
of the agent's mental domain, whereas readiness is the attribute of an executive system in
the agent, not fully under the control of his will.

Within the framework of this model, intention and readiness have measures. This
means that they correspond to the elements of a set £ on which at least a relation of
reflexivity is defined, i.e., each element is identical to itself. If we designate the measures
ofintention and readiness as | intention | and | readiness | , then the model being developed
in this report can be represented as the following function:

| readiness | = F(| intention ), 2.1

where parameter D embodies a set of factors influencing the agent's choice.

If we designate | intention | asx and | readiness | as y, then equation (2.1) appears
as y=F)(x). Consider an example. An agent is facing the alternatives of helping a friend or
of withholding help. The agent's intention can be expressed in these words:

I plan to help my friend.
The agent's readiness, on the other hand, is expressed in the words of an external observer:
He will help his friend.

In the given case the set £ is £={0,1}, where 0 and 1 are the elements of Boolean
algebra: 0 corresponds to the absence of help, and 1 to its actualization. In this example the
measure of intention is Boolean 1, (x=1), and the measure of readiness is Boolean 1, (y=1),
but in other cases they may be different. If from an external observer’s point of view,

He will not help his friend,
then the measure of readiness is 0, (y=0), while the measure of intention remains 1.
" In our model, intention is characterized only by the measure described above; we
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assume that the intentions with equal measures cannot be distinguished by the agent's
cognitive system which elaborates decisions. The same can be said about readiness. This
allows us to consider set E as a set of alternatives. From now on we will omit the word
"measure," and use only the terms intention and readiness.
We call a choice intentional, if the value of x=x* is such that the following equation
holds
x*=Fp(x*), (2.2)

that is, x* is a fixed point of transformation F),

Under condition (2.2) the intention "turns into" readiness, that is, the agent is ready
to choose the action he desires to accomplish. When x #y, the agent's desire does not
coincide with his readiness to fulfill this particular choice. If F;, has no fixed points, this
means that the agent cannot make an intentional choice under given circumstances.
Equation (2.2) allows us to include the concept of free choice in our model. The necessary
condition for free choice is the existence of at least two different fixed points in the
transformation F,(x). A formal analogue to free choice is the selection of one of the fixed
points by the agent under conditions that the agent has no criterion for preferring one of
them over the other (Lefebvre, 1992)

The model also introduces a formal analogue to free will. This appears in the
assumption that the variable x can take on any value from E -- in other words, that the agent
can have any desire from the set E regardless of its potential to be turned into the readiness.
Thus, the concepts of free choice and free will are distinguished.

Within the framework of reflexive models, the transformation F(x) does not
necessarily have fixed points; that is, there may be states in which the agent cannot make
an intentional choice.

Akey problem connected with all reflexive models lies in indicating a specific form
of the function y=F(x). Using simple but fundamental assumptions concerning human
choice, we demonstrated (Lefebvre, 1999a) that the agent corresponds to the following
function: '

y=xH(1-x,)(1-x,)c(x), : (2.3)
where x, x,, X,, and ¢(x) take on the values from the interval [0,1]. The model <x,x,,x;>,
which was introduced earlier, is a special case of the <x,,x,,A> model where c(x)=x. If the
domain of the variables x,, x,, x, and c(x) consists not of all points from the interval [0,1},

but only of its extremes 1 and 0, then function (2.3) can be replaced with the following
Boolean function:

4y = a;+ a2C(x3) . (2.4)

The variables in (2.4) and (2.3) correlate as follows:
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ap <> X

ay; <> Xy

X3 <> X
C(x3) <> c(x).

Variable a; represents the actual pressure toward the positive pole at the moment
of choice, a, represents the expected pressure, x, is the agent's intention or plan, and
function C(x;) shows the agent's cognizant evaluation of the situation. We presume that
C(x;) has a form of W(x,,B;), where B, is the first agent's cognizant image of the second
agent.

We will demonstrate further that a Boolean model can be used for modeling,
elaborating, and choosing the plan of the consequent actions; we will call this kind of the

agent's activity -- the metachoice. The general model <x,,x,,M> can be used for modeling
an actual bipolar choice.

3. METACHOICE

The essence of a metachoice, corresponding to transformation
{ readiness ] =F (| intention|), consists in generation and choice of a program for bipolar
choice which will be carried out in the future. In metachoice, | readiness | and | intention |
take their values not from Boolean set {0,1}, but from the set @ of Boolean functions
®(a,b), each of which corresponds to a certain program. An agent cannot obtain
information about his real readiness directly; it is represented in his inner domain as
intention. Thus, only under the condition that the same Boolean function x* corresponds
to both intention and readiness does the agent have a correct view of the program it is
prepared to implement. In other words, valid information about the program of bipolar
choice appears in the agent only through his actual intentional choice of a program; this
corresponds to x*=F(x*).

During the process of metachoice the agent corresponds to the following equation:

Ay(ay,a3,B3) = ay + a2 (x3B;) (3.1

where
X5=%3(a,,0,,B;). (3.2)

Therefore, Ireadiness | =4,(a,,a,,B;), |intentz'on | =x5(a,,0,,B5), F}, = a, + EZW(x3,B3) ,

D={Boolean function #(a,b), Boolean variable a,, Boolean variable a,, Boolean variable
B.}.
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Let us consider an infentional metachoice. The agent's state (a;,a,,B;3)
corresponds to the following equation:

ay + a2W(w(ay,a,,B5),B3) = y(a;,a,,B;) , (3.3)

which follows from (3.1) under the condition that
Al =.7C3 =!//(a1,a2,B3), (34)

where  is an unknown function.
An intentional choice is possible only if (3.3) has at least one solution .

Let us investigate now the conditions under which equation (3.3) has solutions. The
role of W(x,,B,) can be played by any of the 16 Boolean functions of the type P(a,b), where
a=x, and b=B,, given in the Table 3.1.

We will consider that &>, if the case of @=0 and =1 is excluded. Function
d(a,b), will be called non-decreasing along a, or ND-function, if with o>,
D(at,b)>D(P,b), where be {0,1}. In the opposite case, function P(a,b) will be called a D-
function. The analysis of all 16 Boolean functions #(x,,B;) leads to the following list of
ND- and D-functions (the numbers in Table 3.2 coincide with the numbers given these
functions in Table 3.1).

Table 3.1

Sixteen Boolean functions of the type ®(a,b)
1 0 9 EZ
2 a 10 a+b
3 a 1 a+b
SRR
> b Bl a+p
6 ab 14 ab + ab
! ab b ab + ab
8 az 16 1
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Table 3.2
ND- and D-functions

ND-functions D-functions
1 0 3 ;3
2 x3 7 ;333
4 B3 9 J_C3 §3
3 §3 12 ;3 + B3
6 x,B, 13 ;3 + §3
8 X, §3 14 ;3.83 + X5 §3
10 X3+ BB : 15 x3B3 + ;353
1 X3+ E3
16 1

Statement 3.1. Equation 4
ay +azxW(x3,B;) = x4 (3.5)

has a solution if and only if W(x,,B.) is a ND-function. 4

The proof consists in direct analysis of all the 16 Boolean functions. It follows from
Statement 3.1 that if #(x,,B,) is a D-function, then equation (3.5) has no solution. Table 3.3
gives solutions for all equations in which #{(x;,B,) is an ND-function.

In the preceding analysis, variables a, and a, were treated as independent. There
can, however, be various functional relations between them, reflecting connections between
past and present events. For example, a,=a,. This case represents a situation containing no
surprises. The world today exercises the same pressure on the agent as it did yesterday.




Table 3.3
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Solutions of Equations a; + a, W, (x3,B3) = x3,

where W(x,,B;) is an ND-function

i ND-function W, | Set of solutions x,=y(a,,a,,B;) Solutions independent of B,

1 0 Vi=a Vi=a

) X3 1//1=a1+52,1//2=a1, W1=a1+52,¢//2=a1,
Vi =a +59_B3,t//4 = a; +52_l§3

4 B v =a +5233

5 B3 w,=a, +a2B3

6 x3B; v =a ,‘ylz =a, +EzB3 v, =a

8 x3§3 w,=ay,y,=a, +az2B3 yi=a

10 X3+ B; x//1=a1+c—12,!//2=a1+5283 y/1=a1+;2

1 X3 + B3 wi=a, +a2,y, =a; +azB3 w,=a,+az

16 1 yi=a+az vi=a+a:
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4. BASIC EXAMPLES OF METACHOICE

An international criminal syndicate has committed brutal acts against the citizens
of countries A and B. Each country may demand from the UN discuss the situation and
indict the syndicate for crimes against humanity, or it may remain silent. The UN session
will take place in two months. The governments of A and B believe that indictment is a
positive outcome and that silence is a negative outcome. The UN session will issue a
declaration only if both countries A and B demand this. The criminal syndicate may,
however, threaten governments A and B. Such a threat can be made to country A only
during secret meetings between representatives of the country and of the criminal syndicate.
There can be only two such meetings: first, a month before the UN session, the other an
hour prior to the session. The syndicate's goal is to block the UN’s declaration. A's
government would like to make strategic decision in advance, taking into consideration all
feasible versions of future events, as they are seen by A two month before the UN session.

Let us model] the generation of a set of decisions by country A. From the
government’s point of view, the sought-for UN indictment is a positive action, whereas
silence is negative, so that x;=1 can stand for the intention to demand the indictment, and
x;=0 is the intention to remain silent. B,=1 is country B's decision (from country A's point
of view) to speak up on indictment, and B,=0 is B's decision to remain silent. Function
W(x;,B;) is A's model of the UN. If #=1, the UN declares its indictment, if =0, it does
not. The values of a, and g, correspond to the syndicate's behavior during the first and
second meetings respectively: a,=1 means there was no threat during the first meeting, and
a,=0 means there was a threat; a,=1 means there was no threat during the second meeting,
and =0 means there was a threat. Since the UN will issue a declaration only if both
countries demand this, a table for function W is as follows:

Table 4.1
X, B, W(x,,B;)
1 1 1
1 0 0
0 1 0
0 0 0
It follows from this table that
W(x3,B;)=x,B;, (4.1)
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and equation (3.1) acquires a form of
a + 52x3B3 = A4;. (4.2)
For the intentional choice, equation (4.2) turns into
a; + ;2x3B3 = X3, (4.3)

where x5 = w(a;,a,,B;3).

Equation (4.3) has a solution, since function (4.1) is an ND-function (see Table 3.2).
Let us demonstrate a process of solving this equation. First, note that when g, and a, are not
equal to 0 simultaneously, the value of x; is either 1 or 0. When,

ay=a, =0,x3=y(0,0,B3).
We now construct a table connecting the values of w(ay, a5, B3) with those of g,
and a,. For the values of function y not equal to 0, the conjunctive members of its
disjunctive normal form are given below:

Table 4.2
a; a, X3 conjuction
1 1 1 a,a,
1 0 1 a; as
0 1 0
0 0 v (0,0, B3) aiaz

Connecting these conjunctions with + and making simplifications, we find that
v =a; +a2y(0,0,B;)B;. (4.4)

Function (0,0, B;) depends on one Boolean variable B; and may be one of the following

four functions: 1, 0, B;, Bj. By substituting these values into (4.4) we find that equation
(4.3) has two different roots:
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My, =a.
(2) v, =a, +a2B;.
Interpretation of y/,:
If during the second meeting (an hour before the UN session), there is no threat,
(a,=1), we will demand indictment, (y; = 1), regardless of what happens at the
first meeting. If we receive a threat during the second meeting, (a,=0), we will
remain silent, y; =0.
Interpretation of i/, :
If during the second meeting we do not receive a threat, (a,=1), we will demand
indictment, (y; =1). If we receive a threat, (a,=0), our reaction will depend on

circumstances. A surprise threat (i.e.not preceded by a threat during the first
meeting, a,=1) will entail our silence. If we are prepared to a threat (i.e. there was
a threat during the first meeting, @,=0), then our reaction will depend on B's
behavior: if B demands the indictment, (B,=1), we will also do so, (¥, =1),ifB

remains silent, (B,=0), so do we, (v, =0).

It is worth noting that we do not consider the procedure of solving equation (3.3)
as a logical deduction performed by the agent. We assume that this procedure models an

automatic process in the agent's cognitive system generating the set of programs for bipolar
choice.

Let us consider now another situation. Even though both countries, A and B,
suffered from the syndicate's brutal actions, only A's demand will produce an indictment

by the UN. In this case, #(x;,B,)=x,, and an equation representing the intentional choice
is

ay +azx; =x3. (4.5)
Function W(x,,B;)=x, is a ND-function, thus, equation (4.5) has a solution. From Table 3.3
we find four solutions of the type y = w(ay,a,,B3) for this equation:
Ry, =a.
() ws=a; +az2B;.
(4) ;[/4 = al +;2§3.

Let us interpret these solutions.
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Interpretation of v, = a; + az:
If there are no threats immediately before the UN session, (a,=1), we will demand
indictment, (y; = 1) ; if we receive a threat, (a,=0), our actions will depend on the
circumstances. If this threat comes as a surprise, (a,=1, i.€., no threats were received
in the past), we will be silent (y; = 0) ; if we are prepared for it, (a,=0, i.e., the
threat was received during the first meeting between our representatives and those
of the syndicate), we'll demand indictment, (y; =1).

Interpretation of iy, = a; (identical to the interpretation of y/; in the previous example):
Our decision will depend on the events preceding the UN session. If there are no
threats at this moment, (a,=1), we will demand the indictment, (5, =1) ; if we

receive a threat, (a,=0), we will remain silent, (y, =0).

The programy; =a; + a 2B; has the same interpretation as program y/; in the
previous example.

Interpretation of v, =a; + a2 B3:

It almost completely recapitulates program y 5 , but when a,=0, a,=0 the agent thinks:

I'll make a decision opposite to the one made by B, from my point of view,

v = Bs3.

This raises an interesting point. In the last example, the UN decision to condemn
the syndicate does not depend on B's bipolar choice (function #(x,,B;)=x; does not depend
effectively on B;). Yet the very fact that B is present in A's model of the situation (B, is one
of the arguments of x; = y(a;,a,,B3))leads to the dependence of A's actions on B's
actions in the two programs (B, is an effective argument of the functions y; and y,).

After the agent's cognitive system has completed its generation of the set of
programs {¥,,¥,,W3,¥ 4} , the agent realizes his ability to free choice and selects one

of them. The choice of a program can be performed long before the UN session, so that
during the session A merely carries out a decision made earlier.

Let us emphasize that the model allows us to find a set of possible programs for A's
future actions; it does not allow us, however, to determine which specific program A will
choose. The freedom of choice cannot be modeled within the framework of reflexive
models.

11
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S. THE APPEARANCE OF A DILEMMA

There are four types of relations. between the values of W and those of x; and B;.
First, function W may be independent of both x, and B, i.e. it can be always equal to either
0 or 1. In this case the future is not causally related to the agents' present actions. Second,
W may be independent only of xs, i.e., the value of ¥ depends only of B;. In this case the
future does not depend on A's actions in the present. Third, it is possible that ¥ is
independent of B;. This means that the future is not related causally to B's present actions.
Finally, W depends on both x; and Bs; this means that there is a causal relation between
both agents' present actions and a version of the future yet to be realized. In the last case
there might be situations in which one agent's choice of actions determines the future and
the other agent's actions are inessential. For example, if W=x3B,, then for B;=0, W=0
independently of the values taken on by x;.

Let the following identity hold for a fixed value B, = f3:
W(xs,B)=x3, (5.1)

where x,€{0,1}. Suppose that the agent's goal is to arrive at a situation which can be
evaluated positively. His means for achieving this is to perform an action (in this case a
mental one) corresponding to the value of x;. It follows from (5.1) that the situation will be
positive only if the agent performs a negative action, because for =1, x;=0. Thus, equation
(5.1) models a situation in which, for achieving a positive goal, one must employ a negative
means.

We will call function W(x,,B;) anti-intentional, if identity (5 .1) holds for a certain
value [ . The analysis of all 16 functions W(x,,B;) can be summarized as follows:

Statement 5.1. Function W(x,,B,) is anti-intentional if and only if it is a D-function.
It was proven earlier (see Statement 3.1) that if W(x,,B,) is a D-function, equation

a; + az W(x3, B3) = x3 has no solutions. It follows from Statement 5.1 that this equation

does not have solutions precisely in those cases where condition (5.1) holds for function
W(x3,B5); when, in other words, the situation described by function W(x3,B;) contains a case
in which a positive goal can be reached only by using negative means. We will call the
condition (5.1) a "moral dilemma." Now we can say that the agent finds himself in a
deadlock, i.e., he cannot effect metachoice in a situation containing a moral dilemma.
We will change now our basic example. Let W(x,,B;) be a model of the world
community. Let world public opinion become indignant at the syndicate's actions, if
country A remains silent during the UN session, because it would mean that A is
intimidated by the criminals. On the other hand, if country A demands indictment, there
will be no significant reaction by the world community. In this case, function W is given

12




by the following table:

It follows from this table that

Then (3.1) has the form

REFLEXIVE IW MODEL II

Table 5.1

X3 B, W(x3,B5)

1 -1 0

and, for metachoice the equation is

1 0 0

0 1 1

0 0 1

W(x3,B3)=x3. (5.2)
a; +axx3 = 4, (5.3)
aj + axx3 = X3. (5.4)

Function W(x3,B3) = x3isa D-function, thus (5.4) has no solution. In such a situation

A cannot formulate a set of programs for choice in advance.

The mode] of the agent allows us to propose a new approach to the well-known
prisoner's dilemma, reflecting one of the paradoxes inherent in the theory of rational choice
(see Rapoport & Chammah, 1965). Here is the essence of the paradox. Two individuals are
arrested as suspects in a serious crime. Each of them can plead either "guilty" or "not
guilty." If both plead "guilty," each will be imprisoned for three years. If both plea "not
guilty," each will be imprisoned for two years. If one of them pleads "guilty," and the
second one "not guilty," then the first one will be sentenced for one year, and the second
one for 50 years. These conditions are shown in the following matrix:

Table 5.2
B pleas “not guilty” B pleas “guilty”
A pleas “not guilty” -2, 2 -50, -1
A pleas “guilty” 11, -50 3, -3

It seems that it would be advantageous for both of them to plead "not guilty"”, so that
each would be sentenced to two years. But if one of them learns that the other decides to
plead "not guilty", then it is better for him to plead "guilty" and receive only one year,
although the other will be imprisoned for 50. Thus, to avoid the risk, the players ought to

13
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choose the strategy "guilty", but in this case each of them will be sentenced to three years
instead of two (what they would get if they pleaded "not guilty"). These considerations are
repeated continuously, and there is no obvious plan of rational behavior which would be
unconditionally correct.

The model of the agent with reflexion allows us to take into consideration the moral
aspect in addition to the utilitarian one. Imagine that these suspects have committed no
crime and were arrested mistakenly. In this case, the alternative "plead guilty" meanstelling
alie and as such plays the role of the negative pole; the alternative "plead not guilty" is the
truth and plays the role of the positive pole. It is easy to assume that the prospect of
spending 50 years in prison is a catastrophe for each agent, in comparison with which terms
of one, two or even three years look like acceptable outcomes. Therefore, the play-matrix
given above corresponds to the following Boolean matrix: '

Table 5.3
B,

1 0

1 1,1 0,1

X3

0 1,0 1,1

The Boolean values on the left and at the top indicate which strategies play the role
of positive and negative poles for each player. The pair of values in the squares are
evaluations of the outcomes: the first one for A, and the second one for B.

We will construct now function ¥ for player A. He knows the rules of the game and
understands that for his choice of the first strategy, (x;=1), if the other also chooses the first
strategy, (B;=1), the outcome will be acceptable, (#=1), but if the other chooses the second
strategy, (B;=0), then the outcome for A will be disastrous, (W=0). For A's choice of the
second strategy, (x;=0), the outcome will be acceptable, (=1 ), independently of B's choice.
Therefore for A, relation between different strategies is as follows:

Table 5.4
X3 B w
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From this table we find the analytical form of the function:
W=x3+B;. (5.5)

In the case where no surprise takes place at the moment of choice, a,=a,, and the
agent can be represented as

a; +ai(x3 + By) = 4, (5.6)
and after transformations:
ay+x3+By= 4. (5.7)
Let agent A tend to perform an intentional metachoice. This means that x,=4,, and
we obtain the equation

a; + X3 + B3 =x;5. (5.8)

It follows from (5.8) that when a,=0 and B;=0, identity x3= x5 appears, so that
(5.8) has no solutions, and the agent cannot produce a set of programs for his bipolar

choice. This inability can be regarded as the agent's individual "experience" of the dilemma.
6. REFLEXIVE CONTROL OVER METACHOICE
Reflexive control is a deliberate attempt to influence on the agent's conscious and
unconscious domains. Within the framework of the model of metachoice, we can single out
three broad classes of reflexive control:
(1) Determining the agent's will.
(2) Determining the model of the situation.

(3) Determining the agent's value system.

There can also be combined forms of reflexive control which employ influences
from different classes.

1. Determining the Agent's Will

Within this type of reflexive control, a controlling party forces the agent to choose
one program from a set generated by the agent himself (Fig.6.1).
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program 1

progam 2

progam i

progam h

Contwolled subjct Contiolling subject

Fig.6.1. A controlling party determines the program to choose out of the set
generated by the agent himself.

Consider the first basic example (section 4), in which the UN indicts a criminal
syndicate only under the condition that both countries A and B file their complains.
Imagine that the leadership of the syndicate succeeds in modeling the generation of the set
of programs by country A in the same way we did, and received, as aresult, a set consisting

of two programs:
Vi =a,
Wy =a+ az B;.
It is clear that when ¢,=0 and a,=1, equations y/; = 0 and y, = 0 hold simultaneously.

This means that the criminal syndicate can force country A to remain silent by choosing the
following strategy: do not threaten during the first meeting (a,=1); threaten during the
second meeting (a,=0).

Consider now a more realistic case, in which the leadership of the syndicate does
not completely control the people conducting negotiations at the first meeting. Then the
leadership cannot exclude the possibility that the threat has sounded, (a,=0). If A chooses

program ¥/} = a;,thenathreat an hour prior to the UN session, (a,=0), will accomplish the
task. If A, however, chooses program y, = a; + as B, then following a threat made an

hour prior to the UN session, A's readiness to demand indictment will be y,'= By ; that

is, A will make the decision which, from its point of view, B will make. Imagine further
that the syndicate cannot influence B's choice; it can still achieve its goal if, well before the
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first meeting the syndicate succeeds in persuading A that B will conceal its choice from A.
This would incline A to choose plan /| = a;, because this plan does not depend on B. In

this case, A's choice is in the syndicate's hands. A threat an hour before the UN session will
incline A's government to refrain from demanding indictment, regardless of B's real
decision. The chiefprinciple of control over the adversary will consists in conveying to him
a system of argumentation, which would lead him to the choice of plan advantageous to
the controlling party. To conduct this kind of control, however, one needs information
about the set of plans generated by the controlled agent. The <x,,x,,A>-model serves for
deduction of this very set.

2. Determining the Model of the Situation
The essence of this type of reflexive control consists in determining not a single

program, but a set of programs for the future actions. It can be achieved through
constructing the special function W{(x,,B,) describing the situation (Fig.6.2).

progam 1

progam 2

progam i

progam n

Contolled subject Contwolling swject

Fig.6.2. The controlling agent determines the set of programs generated by the controlled agent.

Let the goal of the criminal syndicate be the same as in the previous example: by
threatening country 4 during the second meeting, to make it to refrain from demanding
indictment. This can be achieved by substituting function W(x,,B;)=0 for function
W(x5,B;=x;B;. To accomplish this task, it is necessary to persuade country A that the UN
will not indict the syndicate no matter what actions are taken by countries A and B. We see
in Table 3.3 that in this case, the set of programs generated by A will consist of only one
program, Y=a,, which can be completely controlled by the syndicate at the time of the
second meeting.
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3. Determining the Agent's Value System

The essence of this type of reflexive control consists of influencing A's general
criteria for the evaluation of actions and outcomes (Fig.6.3).

valuesystem }4
progam 1

progam 2

progam i

progamn

Caontrolied subjct Conimlling swject

Fig.6.3. The controlling agent determines the value system of the controlied agent.

Let the syndicate have the goal of destroying the very procedure by which the
government of country A reaches its decisions. The syndicate can achieve this by providing
the government with an insoluble dilemma. It organizes a broad propaganda campaign
promoting the idea of unity between countries A and B as more important than any UN
resolution. In this way a positive evaluation will be given only to those outcomes in which
countries A and B either both demand the indictment or both agree not to demand it. If such
a campaign is successful, then function W(x,,B;) will correspond to the following table:

Table 6.1
X3 B; W(x;,B;)
1 1 1
1 0 0
0 1 0
0 0 1
It follows from this table that
W(x;,B3) = x3B; + x3 B3. (6.1)
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Hence the intentional choice is described by the following equation:

aj +az2(x3B; + x3B3) = x3. (6.2)
This equation has no solution, since function (6.1) is a D-function (see Table 3.1).
Therefore, A's government faces an insoluble dilemma.

We see that modeling the process of metachoice allows us to analyze in detail the
methods of informational influences on the process of strategic decision making.
7. ABOOLEAN-LINEAR MODEL OF THE AGENT

Consider a Boolean agent
Al =daj + aZW(X3,B3),

where all variables take on values from the set {0,1}. Let variables a,, a,, x, and B; take on
the Boolean values 1 and 0 independently of each other with the following probabilities of
the appearance of 1:

l a, | BRIt
| a4 l X
| x5 | =,
| B, I =y.

To clarify the meaning of the values x,, x,, x, , let the agent who is facing a choice between
the poles experience multiple "jolts" which incline him toward choosing different poles.
We presume that every jolt comes independently of the previous jolts. The probability of
a "positive" jolt's appearance is constant and equal to x,. Thus, x, is not only the probability,
but also the frequency of microjolts toward the positive pole. Analogously, x, is the
frequency of appearance of a microjolt toward the positive pole in the agent's mental image
of the past; x is the frequency of the agent's intention to choose the positive pole, and y is
the frequency with which the agent imagines his partner's choosing the positive pole.

Using these values we can find the probabilities that functions W(x;,B,) and 4, will
take on the Boolean value of 1. Let

| W(x3,B5) | =M(x), |4,|=X,. (7.1)

The value of M(x,y) is the frequency with which the agent assesses the situation positively,
and X, is the frequency with which the agent's executive system is ready to choose the
positive pole. The values of x, and x, will be called the acfual and expected pressures
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toward the positive pole. Variables 1-X,, 1-M, 1-x, 1-y, 1-x,, and 1-x, are defined in a
similar way with respect to the negative pole.
Direct computations demonstrate that

Xy=x+(1-x ) (1-x)M(x,p). (7.2)

The Boolean model of the situation W(x,,B,) corresponds to the function M(x,y), and
Boolean models of the self (x,) and of the other (B,) correspond to variables x and y. Itis
easy to see that function M(x,y) can be represented as bi-linear form:

M(x.y)=axy+bx+cy+d, (7.3)

where a, b, ¢, and d are real numbers.

On the other hand, for the arithmetical values of x,y€{0,1} function M=M(xy)
"models" the Boolean function W(x,,B,), i.e., there is a one-to-one correspondence between
the Boolean values 1 and 0 of variables x,, B,, /¥ and the arithmetical values 0 and 1 of
variables x, y, M. Therefore, to determine a function M(x,y), we have to vary the
arithmetical values 1 and 0 of variables x and y and, using function W(x,,B;), find the value
of function M(x,y) for each combination. As a result we obtain a system of linear equations:

a'1:1+b 1+c 1+d=a,

a'1-0+b* 1+¢c-0+d=0.,
a0 14b-0+c* 1+d=t,

a*0°0+b°0+c-0+d=0., ,
or
atb+c+d=o,

b+d=a,
ct+d=0,
d=a4’

where «; represents integer (1 or 0) values of M(x.,y). By solving this system we find the

coefficients a, b, c, d, and correspondingly, the function M(x.,y). Table 7.1 shows all 16
functions M(x,y).




Table 7.1. A set of functions M/(x,y)=axy+bx+cy+d

REFLEXIVE IW MODEL 11

i W{x;,B;) M(x.y) a, b, c, d
] 0 0 0,0, 0, 0
2 X3 x 0,1,0,0
3 P 1-x 0,-1, 0, 1
4 B, y 0,0, 1,0
5 B 1y 0, 0,-1,1
6 x3Bs xy 1,0, 0,0
7 3B, (1-x)y 1,0,1,0
8 x3§3 x(1-y) -1, 1, 0,0
9 x3B3 lox-ytay 1,-1,-1,1
10 X3+ Bs xX+y-xy 1,1, 1,0
11 x3 + B3 1y 1,0,-1,1
12 X3+ B 1-x+xy 1,-1,0,1
13 X3 + B3 1y -1, 0,0, 1
14 x3B; + x3 B3 x+y-2xy 2.1,1,0
15 x3B3 + x3 B3 1-x-y+2xy 2,-1,-1,1
16 1 1 0,0, 0,1

Function M(x.y) is linear on x, so that (7.2) can be represented as

A@x+BY)=X;, (7.4)
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where
AW)=(1-x)(1-x,)(ay+b), (7.5)
B(y)y=x,;+(1-x,)(1-x,)(cy+d). (7.6)

The values of the parameters a, b, ¢ and d are given in Table 7.1. Since function (7.4) is
linear on x, we call this model Boolean-linear.

Let us compare a Boolean-linear model of the agent with the general scheme
| readiness |=F (| intention .

(1) The following function plays the role of F:

Xy=x+(Lx )(1-x) M(x,p)

(2) | readiness| and ]intention| are numbers from the interval [0,1], where

| readiness | is the value of variable X,, and |intention| that of x.

(3) Parameter D is the set {function M(x,y), numbers X,,%,,y€[0,1]} where

M(x.y) is bi-linear form (7.3) with the values of parameters a, b, c, d given

in Table 7.1.

Itis important to emphasize that, in the framework of the Boolean-linear model, we
consider an intentional choice to be the only bipolar one; in other words, the values of X,
and x are numbers, not functions.

Our next step consists of extending the idea of an intentional choice from the
Boolean model to the Boolean-linear one. We call the agent's choice intentional, if his
readiness X, to choose the positive pole is equal to his intention, x, to do so. The agent
capable of making an intentional choice corresponds to the following equation:

X (L )(1-x)Mx.y)=x, (7.7)

A@)x+By)=x, (7.8)

where 4(y) and B(y) are determined by equations (7.5) and (7.6). Therefore, an intentional
choice corresponds to a transformation of the type Ax+B, and the probability of choice
corresponds to a fixed point of this transformation. Such a transformation, in general, has
the following properties:

(@8  Ax+B has no single fixed point if 4=1 and B#0

(b)  Ax+B has only one fixed point if 4#1

()  for Ax+B, every point from the domain of x is a fixed one, if 4=1 and B=0.

The analysis of all transformations A(y)x+B(y) demonstrates that case (a)isimpossible, and
cases (b) and (c) are possible. The latter corresponds to the agent's state in which his any
intention, x, automatically turns into readiness X;. According to the definition introduced
in Section 2, in this case the agent has freedom of choice.

or in a standard form
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Table 7.2 presents the solutions of equations (7.7) for all 16 functions M(x,y) given
in Table 7.1. The corresponding functions #(x,,B;) are also presented there. Each solution
can be represented as a function of variable y in which x, and x, are parameters:

x=Pyy o(9). (7.9)

Not every function (7.9) is single-valued, but for every pair of values x,, x,, every function
x has a graph that is continuous in every point y€[0,1]. Any case for which function (7.9)
is not single-valued corresponds to the appearance of the agents' freedom of choice.

Table 7.2
Solutions of the equations of the type A(y)x+B(y)=x.
1.
X B, W,=0
M=0
1 1 0
1 0 0
0 1 0 x=x,
0 0 0
2.
X3 B, Wy=x;
M=x
1 1 1
1 0 1 ‘ x; .
, if x+x,>0
0 ) 0 X, +X5 =X X,
x={ £
0 0 0 any€[0,1], ifx,+x,=0
3.
X3 BS VVg= f3
M=1-x
1 1 0
1 0 0
e 1-x5 +x7%4
0] 1 1 1+(1-x; )(1-x)
0 0 1
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4.
X3 B, W=B, M=y
1 1 1
1 0 0
0 1 1 x = x+H(1-x)(1-x,)y
0 0 0
5.
x3 ' B3 W5= B3 Mszl_y
1 1 0
1 0 1
0 1 0 x =x+(1-x ) (1-x,)(1-y)
0 0 1
6.
X B W=x,B
3 3 6 X353 M=y
1 1 1
1 0 0 X .
————, if not(y=1 & x,+x,=0)
1=(I-x; )(1-x,)y
0 1 0 —
x={
0 0 0 any€[0,1], if =1 & x,+x,=0)
7.
X3 B, W=x,B,
M=(1-x)y
1 1 0
1 0 0

=3 +H(1=x; )(1-x, )y

0|1 ! (1=, )




10.
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X3 By W,=1xB. =x(1-
i X303 Mg=x(1-y)
1 1 0
1 0 1 X ;
(3, +3x =% %5 )+(1=x; Y(1=x,)y
0 1 0 not(=0 & x,+x,=0)
x={
0 0 0 any€[0,1], if (=0 & x,+x,=0)
X3 B, W=Xx E .
S Mg=(1-x)(1-y)
1 1 0
1 0 0
_1—x2 (1=x)—(1=x; )(1-x3)y

011 0 1+(1-x )(1=x2 )(1-)

0 0 1
X3 B, W=xs+B, M,=x+y-xy

1 1 1

1 0 1

X} +(1-—x1 )(I—XZ )y
0 1 1 1=(1=x) )(1=x5 )+(1=x; )(1-x; )y
not(y=0 & x,+x,=0)
o o 0 x={

any€f0,1], if (=0 & x,+x,=0)
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11.

12.

13.

% B\ w=x,+B
"o > M, =1-y-xy
1 1 1
b1o ! x; (12, )(1=x, )(1-y)
0 : 0 I=(1-x; )(1-x,)y
not(=1 & x,+x,=0)
x={
010 1 any€[0,1], if (=1 & x,+x,=0)
x3 BS W12= f3 +B3
M=1-x+xy.
1 1 1
1 0 0
I—x, +x,x,
x=
L 1 1+(1=x; )(1=x, )(1-y)
0 0 1
X3 33 W13=f3 +§3 MB:]__xy
1 1 0
1 0 1
I—x,+x,x,
=
0 1 1 1+(1—x,)(1=x5)y
0 0 1
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15.

16.
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X3 By | W~
X3B3+x3B; M, =x+y-2xy
1 1 0
1 0 1
xp+(1=x)(1-x5)y
o011 I (%143, =% J+2(1=x )(1-x,)y
if not()=0 & x,+x,=0)

010 0 x={ anye[0,1], if (=0 & x+x,=0)

X3 B, W= _

X3 B;+x,B
S M= 1-x-y+2xy

1 1 1

1 0 0 1-x; (1-x )—~(1=x; )(1-x, ) y

o | 1 0 F(1=x)(1-x,)(1-2y)

not(y=1 & x,+x,=0)
x={
010 1 any€[0,1], if =1 & x,+x,=0)
x; | B W,=1
M, =1

1 1 1 e

1 0 1

0 1 1 x = l-xtxx,

0 0 1
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8. EXAMPLES OF USING BOOLEAN-LINEAR MODEL OF THE AGENT

We return now to the first example from section 4. Let A's government be unable
to develop a program of its actions in advance. Suppose that, during the first meeting, the
representatives of the criminal syndicate threatened country A, so x,=0; during the second
meeting, however, they softened their position, so that x,=(1/4). In accordance with the
example examined in section 4, country A has a model of the situation represented by the
Boolean function

W(x,,B,)=x38;. (8.1)

From Table 7.2 we find that Boolean function (8.1) fits situation 6, which corresponds to
the following continuous function

M(x.yy=xy. (8.2)
Therefore, A's intentional choice is described by the following equation:
XL ) (1, xy=x. (8.3)

A general form of the solution for this equation can be found in Table 7.2:

X .
, if not()=1 & x,+x,=0)
- (1-x)(1-x;)y ‘
x={ anye[0,1],  if (=1 & x,+x,~0). (8.4)

By substituting values x,=(1/4) and x,=0 into this equation, we obtain

1
* == 5 (8.5)
The above value of x can be interpreted as the probability with which country A will speak
up at the UN session. We see that this probability is a function of the decision made by
country B, from A's point of view.
Let us consider now the case where country A evaluates positively only those

outcomes in which choices of A and B coincide. As it was shown before (see (6.1)), in this
case

W(X3,B3): JC3B3 +;3 ES. (86)
By looking at Table 7.2, we find that this is situation 15; it corresponds to the function
M(x,y)=1-x-y+2xy, (8.7)
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and A's intentional choice corresponds to the equation

x;+H(1-x,)(1-x,)(1-x-y+2xy)=x. (8.8)

A general form of solution of this equation is found in Table 7.2:

l_xz(l_xl)"(l_xl)(l_xz)y if =1 & =0
1+ (1— x)(1 - x,)(1-2) » A not(=1 & x,=0)

x={ any€e[0,1], if (=1 & x,+x,=0) (8.9)

By substituting of values x,=(1/4) and x,=0, we obtain

4-3y
=" 8.10
ol oy (8.10)

Let us now suppose that in the framework of the examples considered above, the
full-scale threats were made during both the first meeting and the second one, that is, x,=0
and x,=0. By substituting these values into (8.4), we obtain

0,ify#1
x={ any€[0,1], if y=1.

It follows from (8.11) that if country A is not completely sure about B's willingness to
speak out, A will refrain from demanding indictment. If A has not doubt about B's actions,
A's choice cannot be determined by an external party: country A has the ability to make a
free choice.

Substitute values of x,=0 and x,=0 into (8.9):

12,  ify#l
any€[0,1], if y=1.

(8.11)

x={ (8.12)

It follows from (8.12) that if country A has any doubt in B's speaking out, A will
choose either alternative with equal probabilities. If A has no doubts, it acquires the ability
to make a free choice. It is important to emphasize the difference between the cases with
x=1/2 and that with x=any€[0,1]. In the first case, we know the probability and can use it
in subsequent computations. In the second case, we have no information at all about the
probability of the agent's choosing the alternatives. The difference between these two cases
is essential for planning reflexive control (see section 12).
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9. REFLEXIVE CONTROL OVER BIPOLAR CHOICE

A Boolean-linear model describes the agent's state immediately before the act of
bipolar choice. By this moment the agent usually has a stable value system, a model of the
situation, M(x,y), and some anticipation of pressure from the external world. Thus, for a
party using the Boolean-linear model to develop controlling influences on the enemy agent,
it is expedient to concentrate its attention on the values

Xs X, ).

Variable x represents the agent's will or inner intention; parameter x, shows the agent's
unconscious perception of the pressure toward the positive pole, and parameter y stands for
the cognizant image of the other agent's actions.

Inintentional bipolar choice, a manipulation with variable x is possible only in those
cases, where the agent can make a free choice. In all other cases, the value of x is
determined unambiguously by the values of x,, x,, and y. All the situations and conditions
under which the manipulation with x-value is possible are given in Table 9.1 (based on

Table 7.2).
Table 9.1. A set of conditions for a direct manipulation with variable x

i W, | M, Yy X1 )

2 X3 x any€[0,1] 0 0

6 x;B, xy 1 0 0

8 > x(1- 0 0 0

x3 B3 (1)

10 x5+B, Cx+y-xy 0 0 0

11 X3+ B3 1-y+xy 1 0 0

4 - - +y-

1 x3B3+x3B3 x+y-2xy 0 0 0
-5 x-y+

15 x3B3+x3Ba l-x-p+2xy 1 0 0

We have to note that for all 16 equations of intentional choice, readiness x=1, when
x,;=1, and x=0 when x,=0 and x,=1. Only for some equations is readiness x=0, when x,=0
and x,=0 (under conditions that y takes on a special value ¥*). They are those very functions
for which it is appropriate to make a threat immediately before the controlled party is to
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make its decision (if it is known that y=y*). Only for function W(x, y) = 0, alast-minute

threat is unconditionally effective.

Further we examine a set of illustrative problems and their solutions related to
finding controlling influences over an enemy.
Problem 1. The syndicate knows that, during the first meeting, its representatives
threatened country A; for country A the only positive outcome is the case when both
countries A and B enunciate their demand. The syndicate's goal is to keep A silent.

(a) Is it necessary to threaten during the second meeting?

(b) Is it possible to influence A's intention?

(c) Is it expedient to influence A's cognizant image of B?
Solution. First we construct a model of agent A. A general form of the equation is

x=xH(1-x)(1-x,) M(x.). ©.1)

From the fact that there was a threat during the first meeting, we obtain x,=0. Since a
positive outcome for A is for A and B express their demand together, W=x;B,=W,, and
M=xy=M,. As aresult, equation (9.1) acquires the form

x=x+H(1-x, )xy. (9-2)

We solve this equation and obtain
x=—
1-(I-x)y

(a) A threat during the second meeting means x,=0. When x,=0, the value x=0 appears
if y<1. When y=1, the agent has freedom of choice. The absence of a threat during
the second meeting means x,=1 which entails x=1. Thus a threat during the second
meeting is necessary.

(b)  Influence on A's intention is possible only if A has freedom of choice, which
appears when x,=0 and y=1. Thus it is possible to influence A's intention if (1) A
is convinced that B will speak up (3=1) and (2) there is a threat made during the
second meeting (x,=0).

(c) If x,=0, the value x=0 appears only if y<1. Thus, it is expedient to influence A's
cognizant image of B: this will ensure that A is not certain of B's actions (in
demanding the indictment).

Problem 2. The syndicate knows that A regards positively the outcome where both A and

B demand the indictment and negatively the outcome where B refrains from making this

demand. The evaluation of the outcome in which A remains silent and B asserts its demand

is unknown. The syndicate threatened country A during the first meeting and plans to
threaten again during their second meeting. How can the syndicate conduct reflexive
control?

(9.3)
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Solution. This description does not allow us to restore a function W(x3B;) unambiguously.
Two functions, W,(x;,B5) and W,(x,,Bs), meet the description (Table 9.2).

Table 9.2
x y W, (x3,B5) W (x3,B;)
1 1 1 1
1 0 0 0
0 1 1 0
0 0 0 0

It follows from this table that W,=y and W =xy; that is, p=4 and g=6. Turning to Table 7.2,
we find two functions satisfying the conditions described (oc;=x,=0):

x=y, (9.4)

0, ify<1
x={
any€[0,1], if y=1. 9.5

A comparison of (9.4) and (9.5) shows that the syndicate must try to persuade A that
B will refrain from demanding the indictment, i.e., y=0.

10. IMITATION OF ANOTHER AGENT

In the Boolean-linear model of the agent, the solution for an intentional choice has
the form x=f{x,.x,,y). This solution depends on a cognizant model of the other agent
represented by the variable y. In many cases, however, the agent does not have any real
information about the choice his partner or adversary may make. Psychological analysis of
this problem shows that in such situations people tend to "role-play," as if they occupied
two separate personalities: the self and the other. It is necessary to distinguish reflexion
from this king of role-playing. Reflexion is mental modeling of the self and the other.
Playing the role of the other, which we call imitation (Lefebvre, 1999a), employs the entire
self for modeling the other. While attempting to penetrate into the adversary's thoughts, the
agent tries not only to think like the adversary, but also to move like him, to speak with his
intonations, to adopt facial expressions characteristic of him. In previous work (Lefebvre,
1999a) we demonstrated that an agent imitating another agent can be represented by the
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following system of equations:
X (1)) ()M (x.y)=x

yt(1-y)(1-x)M,(yx)=y

where the first equation corresponds to the agent himself and the second to his role-playing
of the second agent. Let us note that when M,(x,y) and M (x,y) are bi-linear functions from
Table 7.1, system (10.1) consists of two bi-linear equations:

(10.1)

axytax+ayta, =0
(10.2)
bxy+bx+by+b,~0

It has been demonstrated earlier (Lefebvre, 1999a) that system (10.2) always has at
least one solution (x=x', y=)") such that x','€[0,1]. In addition, for any y€[0,1], the first
equation has a root on x, and analogously, for any x€[0,1], the second equation has a root
on y.

The idea of modeling imitation of the other's decisions by system (10.1) is based on
the assumption that the agent himself (A) tries to reflect correctly the state of the other's
(B's) readiness, who in his turn, correctly reflects the state of A's readiness.

We will describe now a procedure of forming the state of readiness in agent A.
(1)  If only one value y* €[0,1] satisfies system (10.2), i.e., a set of solution has the

form(x = x', y = y*), where x' € S < [0,1], then A’s readiness, x, can be equal to
any x'e S.
(2)  If condition (1) does not hold, but there are such x*€&[0,1] for which

xp+ (1= x))(1 - x) M(x%,y) = x*%, (10.3)

where y is any€[0,1], then A’s readiness, x, can be equal to x*.
(3)  If neither condition described above holds, then A’s readiness, x, cannot be
established.
Point (1) corresponds to the case in which A can predict B's state of readiness. Point
(2) describes the case when A cannot predict B's state unambiguously, but he can move to
a state which does not depend on B's state. Point (3) corresponds to the case in which A can
neither predict B's state, nor move to the state where he does not depend on B.
Let us consider three examples. First, W, =(1-x)y, x,=x,=0 and W =1-y,y,=y,=0. We
obtain the following system:
(I-x)y=x
(10.4)
Ly=y

33




Vladimir A. Lefebvre

System (10.4) has only one solution (x=1/3, y=1/2). By virtue of point (1), agent A moves
into state x=1/3.
Second, W, =xy, x,=x,=0 and W,=x, y=y,=0.

xy=x
(10.5)
xX=y
System (10.5) has two solutions: (x=0, y=0) and (x=1, »=1). The condition of point (1) is
not satisfied, but that of point (2) is, since at x=0 the first equation in (10.5) turns into
0y = 0, which does not depend on y; therefore, agent A moves into state x=0.

Third, W;zy, x1=x2=0 and W;;sz y1=y2=0'

y=x
(10.6)
x=y
System (10.6) has solutions of the type (x=0, y=0.), where 0, are arbitrary numbers from the
interval [0,1]. The conditions for the points (1) and (2) are not satisfied, so that A cannot
establish a state of readiness. In this case A may stimulate B to move into any fixed state

¥€[0,1], only with the purpose of letting his own cognitive system form a certain value of
x based on the information about y.

11. USING A METHOD OF REFLEXIVE GAMES
TO FIND VALUES OF x,, X, y,, y,

Classical game theory has from the very beginning had two interpretations. First of
all, it was regarded as a normative theory designed to help people to make optimal
decisions. Second, it was understood as a theory describing real human choice in situations
of conflict. The second interpretation was based on the assumption that a human being is
essentially rational and strives for optimal outcomes. Classical game theory continues to
play the normative role with reasonable success, but as a descriptive theory it has not
achieved its intended purpose, especially where individual choice is concerned (Leinfellner
& Kohler, 1998). We believe that one of the main reasons for this is its privileging of the
utilitarian over the deontological aspect of choice in polarization of the alternatives, despite
the fact that real human choices involve both aspects.

We have earlier demonstrated the possibility of constructing a more general
descriptive theory based on the Boolean-linear model and combining these two aspects
(Lefebvre, 1999a). The main idea consists in using equations (10.1), where the values of
Xy, X3, ¥y, and y, are the mixed strategy values.
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We begin with constructing two non-zero-sum-game matrices using information
on real situation. Both matrices are constructed from player A's point of view.

B B

1 2 2 2 2
a]lls blll . alllﬂ b 12 a 1i» b 11 a 125 b 12

1 2 2 2 2
a12]= blZl a 22 b122 a 21 b 21 a 225 b 22

The first matrix shows the utility-measures of the outcomes at the moment of
choice; the second matrix shows the expected utility-measures, which were formed earlier
based on previous experience. Then the modeling pursues the following scheme.

1. Each matrix is reconstructed into two matrices showing the utility-measures for each
player separately and considered as the play matrix for a zero-sum game.

B B B B
alll allz bll] bllZ a211 a2]2 b2” bz]Z
A A A A
alll alzz b!ZI b]22 a221 a222 b221 szZ
(@) (b) (c) (d)

A’s optimal mixed strategies, (p;,1— p,;)and (p,,1- p,), are found from
matrices (a) and (c); B’s optimal mixed strategies (from A’s point of view),
(9,,1-¢g,)and (q,,1—-g,), are found from matrices (b) and (d).

2. Using information about real situation, we determine which of the two pure strategies
for each player is associated with the positive pole (we assume that p,, p,, and ¢,, ¢,
correspond to the positive poles).
3. Functions M,(x.y) and M,(y,x) are constructed based on the information about the real
situation.
4. The system of equations is written down as follows:

xp+ (1= x))(A = %)M, (x, ) =x

n+A=y)A-y2)M,(y,x)=y.
5. This system is analyzed in accordance with the rules described in section 10, the result
of which is a prognosis about A’s state of readiness.

Let us consider an example. Each country regards as positive only those outcomes
where the other country asserts its demand. After the first meeting with the criminal
syndicate representatives, a month prior to the UN session, country A has the following
play-matrix describing its potential losses (in millions of dollars):
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demand
A

no demand

After the second meeting, the matrix changed to

demand
A

no demand

demand no demand
a=-1 a’,=-2
b == b*,=-3
@,=-3 @,=1
b221=_ b222=0

demand no demand
az” -4 a212=_4
b211~"2 b*,=-3
al,=-2 a,=-2
b, =- b=-1

Problem: To develop a prognosis for country A’s choice.
1. Construct matrices (a), (b), (c), and (d):

B

-4 | -4

-2 | -2
(a)

From matrices (a) and (c) we find optimal mixed strategies for player A; the following

B B
-2 | -3 ~1|-2
4
-3 | -1 -3 | -1
(b) (©)

numbers corresponds to the upper rows:

columns:

2. The strategies connected with the demand for indictment of the syndicate are positive for

each country, A and B, so that

pi=0, p,=213,

and from matrices (b) and (d) for player B; the following numbers corresponds to the left

q,=2/3, q,=1/2.

x,=0,
Y7213,

36

Xx,=2/3
Y=1/2.

-1

-4

(d)
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3. Each country regards as positive that outcome where only the other country asserts its
demand, so that

W)=y, W,(y.x)=x
4. Let us write a system of equation:

0+a-ma~%p=x

2 2 1
3TA-A-F)x=y,
or
l —
377
20,0,
36

5. This system has only one solution:

x=iz0.24, y=£z0.71.
17 17

Therefore, From A’s point of view, B will express its demand with a proBébility of 0.71,
and A will do so with a probability of 0.24.

12. REALIZATION OF A CHOICE

In our previous report (Lefebvre, 1999b), we introduced the values P, and P,
limiting the area in which the agent’s cognitive system is capable of turning readiness into
choice. It is necessary to emphasize that these limit values cannot be computed with the
help of the formal reflexive model, they require additional theoretical investigation. A brief
glance at the history of making important decisions reveals a peculiar difficulty: people do
not easily accept the very situation of choice. In our terminology we can say that the
readiness to choose is not established. For some people, this phenomenon occurs when the
world exercises intense pressure toward one of the alternatives, and for others when the

~ pressure is approximately equal toward each alternative. We will call the former agents I,

and the later agents II. To clarify the formal scheme to be introduced presently, let us
consider two statements, which metaphorically describe agents I and II:
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Agent I:
In making a choice I will lose something. Before I make my choice I potentially
possess both alternatives; after my choice I have only one. The very fact that in the
future T have the opportunity to choose is valuable for me, I don’t want to loose it.
Thus I won’t make any choice for the time being..

Agent II:
A state of uncertainty is difficult for me to tolerate. In this state I don’t possess
either of the alternatives. I need to avoid being in this state, and if  am already in

- 1t, I"d better escape from it as soon as possible by choosing one of the alternatives.

To represent these statements in the terms of the model, we introduce the following
function:

U, (x,h) = a(H(x) - h), 12.1)
where a = +1, H=-xlog, x~ (1 - x)log, (1- x) and / [0,1].

The value of function U,(x,k) will be called potential of choice; we will suppose that the

agent accepts the task of choosing only under conditions that the potential of choice is not
negative.

We can see that H(x) is the entropy of choice. The value a=1 corresponds to agent
I, and the value a=-1 to agent IL. Examples of graph for U, and U., are given in Fig.12.1:

L h

-1+h

(a) Uyp= H(x)-h (b) U_1=-H(x)+h

Fig. 12.1. Graphs of the potentials of choice.
() Graph for agent I; the potential is not negative only at the interval [c,,c,].
(b) Graph for agent I1; the potential is not negative for intervals [0,c,] and [c,,1].
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We see from Fig.12.1(a) that agent I accepts the task of choice only ifhis readiness belongs
to the interval [c,,c,], and from Fig.12.1(b) that agent II accepts the task of choice if his
readiness belongs to the intervals [0,c,] and [c,,1]. The value of H(x) is an uncertainty
measured in bits; we will consider % as a quantity of bits and give its interpretation. For
agent I, 4 is the minimal uncertainty given which his cognitive system can make a choice.
For agent I, 4 is the maximal uncertainty given which he still can make a choice. For agent
I, the greater the value of 4, the narrower the interval [c,,c,] from which values of x can be
taken. When #=0, the value of x can be any number from the interval [0,1]; when 4#=1, there
is only one value of x, (*2). For agent II, the greater the value of 4, the wider the intervals
[0,c,] and [c,,1], from which values of x can be taken. When 4=0, x is either 0 or 1; when
h=1, x can be any number from the interval [0,1]. Parameter # comprises the agent’s
individual characteristics defining the area of values for his readiness. The framework of
mathematical modeling by itself does not permit us to construct practical methods for
determining the values of # and a. This task must involve experts’ evaluations.

In our previous report (Lefebvre, 1999b), we bring examples of reflexive control in
which a controlling party took into consideration the limit values P,,, and P, . The
difference between agent I and agent II, however, was not then analyzed. We will
investigate now what new opportunities may arise for reflexive control if we know the type
of the agent (I or IT). Let us return to the example given at the end of section 8. Country A
evaluates positively only those outcomes, when A’s and B’s choices coincide, and x,=x,=0.
A’s state of readiness in this case is given by (8.12). If agent A is not certain that B will
make the demand for indictment (y # 1), A’s readiness is (%2). Let the criminal syndicate

know that A is type II agent, i.e., a=-1 and his potential of choice is described by curve
12.1(b). Let also the syndicate be able to manipulate A’s image of B, i.e., to manipulate
with y. What actions must undertake the syndicate to make A’s decision more difficult? It
follows from a=-1 that the readiness (%2) cannot be realized when #>0. The syndicate may
not know the value of #. Nevertheless it must make A to doubt in B’sdemand y # 1. Then
if it occurs that #>0, A’s cognitive system will not be able to generate readiness. If A
remains certain that B will make the demand (y=1), then he would have freedom of choice,
i.e., his cognitive system can generate readiness; x can be any number from [0,¢,] or [c,,1].

13. THE GOLDEN SECTION
In accordance with the <x;,x,x; >- model, the golden section value,

x=(5-1)/2=0618..., appears under the following conditions:

(1) The alternatives are strictly polarized.
(2) The agent does not have an operational criterion which would enable his
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cognitive system to compute the utility-measures of the alternatives.
(3) The agent has no previous experience of choice in similar situations.
(4) The agent’s choice is intentional.

The following equation corresponds to the < Xy 5 X, X5 > - model:
x=x;+ (1= x)(1-x,)x,. (13.1)
Since no operational criterion exists, pressures toward different poles are

indistinguishable in their strength, so x;=(“2), and since there is no previous experience,
value of x, is determined by readiness X, 80 x,=x. By substituting these values into (13.1) we

obtain
x=F%s (13.2)
2+ X3
For the intentional choice, x=x;, and (13.2) is transformed into
x*+x-1=0, (13.3)

whose positive root is x = (+/5 — 1)/2=0618... (see Lefebvre, 1997).

Consider an example. The UN announces a discussion on such an abstract problem
as the prohibition of private ownership of land on the Moon. For country A this prohibition
plays the role of the positive pole, but since no “measurable” factors in favor of this point

of view exist, in accordance with the < Xy ,X3X3 >- model, A’s favorable arguments

constitutes 62%; that is, the expected pressure toward the positive pole is x,=0.62 (Adams-
Webber, 1997). During the UN discussion, four countries exert pressure on A, inclining it
to vote against the prohibition, and one country tried to force country A to vote for the
prohibition. So the actual pressure toward A’s positive pole is x,=0.2. By substituting the
values of x, and x, into (13.1) and assuming that x,=x, we obtain the probability with which
A will vote for the prohibition of private ownership of land on the Moon:
x= ad ~ 029 .
xl + xz - xlxz

This example illustrates that the value of X, equal to the golden section is chosen in those
cases in which previous experience does not rest on measurable factors.

14. CONCLUSION

The analysis conducted in this research demonstrates the following:
(1) The model <x,,x,,A> can be used to represent the interaction of two agents.
(2) The Boolean version of the <x,,X,,M>-model allows us to represent the agent’s
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generation of strategic decisions, i.e., ramified programs of his future behavior in IW.

(3) The Boolean-linear version of the <x,.x,,A>-model allows us to represent the agent’s
state at the moment of choice between the two poles.

(4) Both the Boolean version and Boolean-linear version of the model can be employed for
conducting reflexive control in IW.

(5) For practical needs it seems necessary to create a special computerized program for
modeling situations with the help of <x,x,,A>.

(6) The next step in the theoretical research is to find the limits on application of the
Boolean-linear version of the <x,x,,M>-model and moving to the development of a
nonlinear version of this model.
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